面价/唤醒,表达和动作单元是面部情感分析中的相关任务。但是,由于各种收集的条件,这些任务仅在野外的性能有限。野外情感行为分析的第四次竞争(ABAW)提供了价值/唤醒,表达和动作单元标签的图像。在本文中,我们介绍了多任务学习框架,以增强野外三个相关任务的性能。功能共享和标签融合用于利用它们的关系。我们对提供的培训和验证数据进行实验。
translated by 谷歌翻译
从合成图像中学习由于标记真实图像的困难而在面部表达识别任务中起着重要作用,并且由于合成图像和真实图像之间存在差距而具有挑战性。第四次情感行为分析在野外竞争增加了挑战,并提供了Aff-Wild2数据集生成的合成图像。在本文中,我们提出了一种手工辅助表达识别方法,以减少合成数据和真实数据之间的差距。我们的方法由两个部分组成:表达识别模块和手部预测模块。表达识别模块提取表达信息,并预测模块预测图像是否包含手。决策模式用于结合两个模块的结果,并使用后延伸来改善结果。F1分数用于验证我们方法的有效性。
translated by 谷歌翻译
在线广告中,自动竞标已成为广告商通过简单地表达高级活动目标和约束来优化其首选广告性能指标的重要工具。以前的作品从单个代理的视图中设计了自动竞争工具,而不会在代理之间建模相互影响。在本文中,我们从分布式多功能代理人的角度来看,请考虑这个问题,并提出一个常规$ \强调{m} $ ulti - $ \强调{a} $ gent加强学习框架,以便为$ clown {a} $ uto - $ \ Underline {b} $ IDDIND,即MAAB,了解自动竞标策略。首先,我们调查自动招标代理商之间的竞争与合作关系,并提出了一个温度定期的信用分配,以建立混合合作竞争范式。通过在代理商中仔细开展竞争和合作权衡,我们可以达到均衡状态,不仅担保个人广告商的实用程序,而且保证了系统性能(即社会福利)。其次,为避免竞争低价潜在勾结行为的合作,我们进一步提交了律师代理,为每位专家设定个性化招标酒吧,然后减轻由于合作而导致的收入退化。第三,要在大型广告系统中部署MAAB,我们提出了一种平均现场方法。通过将具有与平均自动竞标代理商相同的广告商进行分组,大规模广告商之间的互动大大简化,使得培训MAAB有效地培训。在离线工业数据集和阿里巴巴广告平台上进行了广泛的实验表明,我们的方法在社会福利和收入方面优于几种基线方法。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Consensus clustering aggregates partitions in order to find a better fit by reconciling clustering results from different sources/executions. In practice, there exist noise and outliers in clustering task, which, however, may significantly degrade the performance. To address this issue, we propose a novel algorithm -- robust consensus clustering that can find common ground truth among experts' opinions, which tends to be minimally affected by the bias caused by the outliers. In particular, we formalize the robust consensus clustering problem as a constraint optimization problem, and then derive an effective algorithm upon alternating direction method of multipliers (ADMM) with rigorous convergence guarantee. Our method outperforms the baselines on benchmarks. We apply the proposed method to the real-world advertising campaign segmentation and forecasting tasks using the proposed consensus clustering results based on the similarity computed via Kolmogorov-Smirnov Statistics. The accurate clustering result is helpful for building the advertiser profiles so as to perform the forecasting.
translated by 谷歌翻译
Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.
translated by 谷歌翻译
Current mainstream object detection methods for large aerial images usually divide large images into patches and then exhaustively detect the objects of interest on all patches, no matter whether there exist objects or not. This paradigm, although effective, is inefficient because the detectors have to go through all patches, severely hindering the inference speed. This paper presents an Objectness Activation Network (OAN) to help detectors focus on fewer patches but achieve more efficient inference and more accurate results, enabling a simple and effective solution to object detection in large images. In brief, OAN is a light fully-convolutional network for judging whether each patch contains objects or not, which can be easily integrated into many object detectors and jointly trained with them end-to-end. We extensively evaluate our OAN with five advanced detectors. Using OAN, all five detectors acquire more than 30.0% speed-up on three large-scale aerial image datasets, meanwhile with consistent accuracy improvements. On extremely large Gaofen-2 images (29200$\times$27620 pixels), our OAN improves the detection speed by 70.5%. Moreover, we extend our OAN to driving-scene object detection and 4K video object detection, boosting the detection speed by 112.1% and 75.0%, respectively, without sacrificing the accuracy. Code is available at https://github.com/Ranchosky/OAN.
translated by 谷歌翻译
Due to the issue that existing wireless sensor network (WSN)-based anomaly detection methods only consider and analyze temporal features, in this paper, a self-supervised learning-based anomaly node detection method based on an autoencoder is designed. This method integrates temporal WSN data flow feature extraction, spatial position feature extraction and intermodal WSN correlation feature extraction into the design of the autoencoder to make full use of the spatial and temporal information of the WSN for anomaly detection. First, a fully connected network is used to extract the temporal features of nodes by considering a single mode from a local spatial perspective. Second, a graph neural network (GNN) is used to introduce the WSN topology from a global spatial perspective for anomaly detection and extract the spatial and temporal features of the data flows of nodes and their neighbors by considering a single mode. Then, the adaptive fusion method involving weighted summation is used to extract the relevant features between different models. In addition, this paper introduces a gated recurrent unit (GRU) to solve the long-term dependence problem of the time dimension. Eventually, the reconstructed output of the decoder and the hidden layer representation of the autoencoder are fed into a fully connected network to calculate the anomaly probability of the current system. Since the spatial feature extraction operation is advanced, the designed method can be applied to the task of large-scale network anomaly detection by adding a clustering operation. Experiments show that the designed method outperforms the baselines, and the F1 score reaches 90.6%, which is 5.2% higher than those of the existing anomaly detection methods based on unsupervised reconstruction and prediction. Code and model are available at https://github.com/GuetYe/anomaly_detection/GLSL
translated by 谷歌翻译
We propose a new neural network design paradigm Reversible Column Network (RevCol). The main body of RevCol is composed of multiple copies of subnetworks, named columns respectively, between which multi-level reversible connections are employed. Such architectural scheme attributes RevCol very different behavior from conventional networks: during forward propagation, features in RevCol are learned to be gradually disentangled when passing through each column, whose total information is maintained rather than compressed or discarded as other network does. Our experiments suggest that CNN-style RevCol models can achieve very competitive performances on multiple computer vision tasks such as image classification, object detection and semantic segmentation, especially with large parameter budget and large dataset. For example, after ImageNet-22K pre-training, RevCol-XL obtains 88.2% ImageNet-1K accuracy. Given more pre-training data, our largest model RevCol-H reaches 90.0% on ImageNet-1K, 63.8% APbox on COCO detection minival set, 61.0% mIoU on ADE20k segmentation. To our knowledge, it is the best COCO detection and ADE20k segmentation result among pure (static) CNN models. Moreover, as a general macro architecture fashion, RevCol can also be introduced into transformers or other neural networks, which is demonstrated to improve the performances in both computer vision and NLP tasks. We release code and models at https://github.com/megvii-research/RevCol
translated by 谷歌翻译